TV

Survival Tactics: AI-Driven Insights into Chromatin Changes for Winter Dormancy in Axillary Buds

AI-Driven Insights into Chromatin Changes for Winter Dormancy in Axillary Buds

Stay informed and ahead of the curve! Follow AgriTalker on WhatsApp for real-time updates, breaking news, and exclusive agricultural content. Don't miss out – join now! Join AgriTalker Newspapers Channel

Afrimash.com-Nigeria
Key Points

  • Researchers used AI-Driven Insights to analyse epigenetic changes, focusing on chromatin and transcriptional shifts, to understand winter dormancy in apple buds, helping plants adapt to environmental changes.
  • The study revealed that circadian rhythms and gene expression changes are key in transitioning buds into dormancy, with deep-learning AI models identifying critical cis-regulatory elements (CREs).
  • Findings may lead to strategies for sustainable crop production in the face of global warming, particularly by optimising plant dormancy responses during shorter winters.

Survival Tactics: AI-Driven Insights into Chromatin Changes for Winter Dormancy in Axillary Buds

Researchers employed artificial intelligence to analyse the epigenetic impact of chromatin and transcriptional changes during winter dormancy in axillary apple buds

Epigenetics confers a survival advantage in plants to endure harsh weather by inducing bud dormancy. Environmental factors or intrinsic signals trigger the transition between growth and dormancy.

Researchers explore the role of chromatin and transcriptional changes in the bud and further analyse data using artificial intelligence models. The findings of this study highlight epigenetic strategies to overcome the effects of short winters during global warming for plant survival.

Evolution has enabled plants to survive under adverse conditions. The winter bud of a plant is a crucial structure that establishes adaptability. Depending on environmental and intrinsic conditions, buds can transition between growth and dormancy.

The three dormancy phases are determined by signals triggering each phase: ecodormancy, influenced by environmental factors; paradormancy, promoted by other plant organs; and endodormancy, maintained by internal signals within the bud.

Paradormant buds enter endodormancy in response to changes in day length and/or low temperature in autumn, while endo- and eco-dormant phases occur in response to chilling temperatures. The transition from para- to endodormancy is a protective phenomenon for the bud. The epigenetic mechanism that triggers endodormancy is under-researched.

RECOMMENDED  See How To Make Free Liquid Fertiliser from Various Sources for Sustainable

In this new study published in Tree Physiology on June 21, 2024, Assistant Professor Takanori Saito and his colleagues explore the epigenetic modifications in chromatin structures and transcriptional changes that enable temperature recognition in ‘Fuji’ apple axillary buds.

Afrimash.com-Nigeria

The results were further interpreted by deep-learning artificial intelligence (AI) models and statistical analysis. This research was co-authored by Dr. Shanshan Wang, Dr. Katsuya Ohkawa, Dr. Hitoshi Ohara, and Dr. Satoru Kondo from the Graduate School of Horticulture at Chiba University.

One of the objectives of this study was to understand differently expressed genes (DEGs) in the transition phase from para- to endodormancy. Genes related to the cellular response to hypoxia, the defense response to abscisic acid (ABA), and circadian rhythm were activated at the initial stage of bud dormancy. Further, the authors revealed that nucleosome depletion was not correlated with the transcriptional pattern.

“In contrast, among the DEGs, although a nucleosome position shift in the putative promoters was observed, a difference in nucleosome occupancy between the upregulated and downregulated genes in most gene bodies was not observed during the axillary bud dormancy phase transition,” explains Dr. Saito.

Cis-regulatory elements (CREs) are short DNA sequences that influence gene expression. The authors further examined the relationship between transcriptional changes and CREs using a deep-learning AI model. Elaborating on these results, Dr. Saito says, “CREs related to the cell cycle, circadian rhythm, and the TATA box were found. In particular, the importance of the circadian rhythm for downregulated genes was also concomitant with the transcriptional changes.” The data further revealed that COL9 signal were possibly involved in altering CO levels to trigger bud dormancy.

RECOMMENDED  Identifying Plantain Weeds in Your Garden: A Comprehensive Guide

While most AI-based epigenetic studies use large datasets, their model uses a small dataset. Despite this, Bayesian statistical analysis linked epigenetic changes to gene transcription involved in winter bud regulation. The AI approach from this study can enhance epigenetic analysis, particularly for non-model plants with less developed genome databases.

Dr. Saito highlighted, “The collective results of our study using DL showed that the cold-driven circadian rhythm-based machinery in axillary bud dormancy induction is tuned by single-nucleosome oscillations.”

Going ahead, these findings can enable the development of more efficient strategies to maintain a sustainable production of crops, plants, and trees to counter the effects of global warming.

Copyright 2024 AgriTalker. All rights reserved. This material, and other digital content on this website, may not be reproduced, published, broadcast, rewritten, or redistributed in whole or in part without prior express written permission from AgriTalker.

Follow on Facebook, Twitter and Instagram

Afrimash.com-Nigeria

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Afrimash.com-Nigeria